データサイエンス をマーケティング実務に活かすイロハ(後編)
このシリーズでは、データサイエンスをマーケティング実務で活用するためのポイントを前編と後編に分けて解説しています。前編では、データサイエンス用語とマーケティング実務用語を紐づけて解説しました。後編となる今回は、データサイエンティストと的確にコミュニケーションを取ることで、マーケティング実務における生産性向上といった効果を上げるためのコツや心構えについて解説します。
目次
データサイエンティストという職業と付き合い方
2010年代に入ってから職業として認知されるようになったデータサイエンティストですが、データサイエンティスト志望者は年々増加傾向にあり、企業活動における活用が当たり前になる時代が到来しています。それはマーケティング職においても例外ではなく、マーケティングにデータサイエンスを活用して成果改善に繋げた事例が数多く紹介されるようになってきました。一方で、自社においてもデータサイエンスを活用したいと意気込んでみたものの、「データサイエンティストと一緒に仕事をして話がかみ合わない」とか、「提案を受けたけど、課題解決につながるかどうかイマイチ想像できない」といった話もよく耳にします。
こういった壁を乗り越え、成果に繋がるデータサイエンス活用をやり遂げるためには、まず、データサイエンティストの特性を理解することが大切です。例えばデータサイエンティストとのコミュニケーションにありがちな行き違いとその原因を理解しておくと、仕事の頼み方が考えやすくなります。また、データサイエンティストに意図をうまく伝える「コツ」をつかむことで、生産性が上がり、より効果的な活用につなげることができます。
データサイエンティストの得意なこと・苦手なこと
誰にでも得意なこと・苦手なことが有りますが、データサイエンティストが一般的に得意・苦手と言われていることをご紹介します。得意なことはもちろん、データサイエンスそのものです。データを適切に加工し解析したり、モデルを構築してアウトプットを出力したりといった工程は多くのデータサイエンティストが得意とするところです。
一方、苦手なことは、データサイエンスの前後の工程です。例えば分析を始める前には、「ビジネス課題を正しく理解し、その解決に必要なアウトプットから逆算してプロジェクトを組み立てる」といったことが必要になりますし、分析が終わった後には「分析結果を関係者にわかりやすく共有し、アクション判断の材料として展開する」ことが必要になります。これらをデータサイエンティストにすべて任せることはあまりお勧めしません。それは、データサイエンティストは、多くのケースにおいて依頼主のビジネスについて門外漢であり、役割的にリードする立場には適していないためです。
例えば、分析前の工程をデータサイエンティストにすべて委ねてしまうと、ビジネス課題の理解が十分でないまま、データサイエンティスト自身が得意とする手法で分析を実行してしまいがちです。その結果、依頼主が必要とするアウトプット要件にそぐわない分析結果となってしまう危険性が高まります。また後工程の、分析結果によって取るべきアクションについて依頼主を含めた関係者間での事前のすり合わせが十分でないと、アウトプット自体をうまく活用できないままプロジェクトが終わってしまうという事態になりえます。
フレームワーク「CRISP-DM(クリスプ・ディーエム)」
こういった“悲劇”を未然に防ぐために、データ分析プロジェクトをすべての関係者にとって意義あるものとするためのフレームワークが様々提唱されています。今回はその一つとして「CRISP-DM(クリスプ・ディーエム)」をご紹介します。
CRISP-DMは図のようなイメージで表され、ビジネス理解から始まりデータの理解・準備、モデリング、評価、共有・展開というデータ分析プロジェクトの工程の流れを表したものになります。この流れに忠実に沿った計画立てが、データ分析プロジェクトの失敗確率を下げるコツです。
ポイントとしては、ウォーターフォールのような一方通行のプロセスではなく「必要に応じて実行済みのプロセスへ遡ってやり直す」ということです。データサイエンティストに仕事を依頼する側は、図で赤くしている「ビジネス理解」と「データ理解」そして「共有・展開」に神経を注いで、データサイエンティストと入念にすり合わせをするとプロジェクトの成功確率が高まるでしょう。
データサイエンティストに意図をうまく伝え、生産性を上げるコツ
次に、データサイエンティストに依頼者の意図を正確に伝えるための「伝えるコトバの工夫」について解説します。データサイエンティストが用いる専門的な用語を覚える必要はありません。依頼者自身のコトバで伝えることが重要です。
ポイントとなるのは、手法の名前ではなく「動詞で表現する」ということです。データサイエンスでできることは、おおむね「予測」、「分類」、「要約(縮約)」、「因果を検証」、「因果を探索」の5つの動詞いずれかに該当します。
例えば「データから何かを予測したい」場合は、回帰分析、決定木分析などといった形で、それぞれの動詞と手法が対応します。(図表3)表の右側にあたる手法は、依頼者が指示を出す必要はありません。データサイエンティストに選定を任せてしまいましょう。
データサイエンティストに伝えるべきことは左側、データサイエンスで何をしたいのかという「動詞」です。動詞を伝えれば、データサイエンティストが依頼主の意図をくみ取って分析イメージを作り上げてくれるでしょう。
まとめ
ここまで、前編・後編を通じて、データサイエンスをマーケティング実務で活用するポイントや、データサイエンティストの役割についての理解を深めることで、うまくコミュニケーションを取りながら効果的にデータサイエンスを活用していくためのコツについて解説してきました。データサイエンスを活用するにあたり、「何から手を付けていいかわからない」という状態から「データサイエンティストにちょっと相談してみたい」と前向きな気持ちになっていただけたら幸いです。データサイエンティストとうまく付き合うことで、貴社のマーケティング活動がより前進し、大きな成果に結びつくことを願っております。
最後になりますが、インテージのDX支援サービスでは、データサイエンス以外にもマーケティングダッシュボードやデータ統合基盤の開発・保守運用といったサービスも提供しておりますのでお気軽にご相談ください。
※本記事の内容は、定期的に開催している無料セミナーi-college「データサイエンス基礎講座~マーケティング実務に活かすイロハ~」から抜粋してお届けしております。「データサイエンティスト」との付き合い方や、本記事でご案内したフレームワーク「CRISP-DM」についてより詳細に説明しております。ご興味・ご関心がございましたらぜひご参加ください。セミナー内容の詳細・開催スケジュール・お申込はこちらをご確認ください。
転載・引用について
◆本レポートの著作権は、株式会社インテージが保有します。
下記の禁止事項・注意点を確認の上、転載・引用の際は出典を明記ください 。
「出典:インテージ 「知るギャラリー」●年●月●日公開記事」
◆禁止事項:
・内容の一部または全部の改変
・内容の一部または全部の販売・出版
・公序良俗に反する利用や違法行為につながる利用
・企業・商品・サービスの宣伝・販促を目的としたパネルデータ(*)の転載・引用
(*パネルデータ:「SRI+」「SCI」「SLI」「キッチンダイアリー」「Car-kit」「MAT-kit」「Media Gauge」「i-SSP」など)
◆その他注意点:
・本レポートを利用することにより生じたいかなるトラブル、損失、損害等について、当社は一切の責任を負いません
・この利用ルールは、著作権法上認められている引用などの利用について、制限するものではありません
◆転載・引用についてのお問い合わせはこちら